
This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

SYNTHESIS OF MONOSUBSTITUTED PENTAKIS(2,6-DIETHYLPHENYLISO CYANIDE)- COBALT(I) COMPLEXES WITH BIDENTATE TERTIARY PHOSPHINE LIGANDS. I. MONOMETALLIC COMPLEXES Clifford A. L. Becker^a

^a Department of Chemistry, University of Bahrain, Bahrain, Arabian Gulf

To cite this Article Becker, Clifford A. L.(1993) 'SYNTHESIS OF MONOSUBSTITUTED PENTAKIS(2,6-DIETHYLPHENYLISO CYANIDE)- COBALT(I) COMPLEXES WITH BIDENTATE TERTIARY PHOSPHINE LIGANDS. I. MONOMETALLIC COMPLEXES', Journal of Coordination Chemistry, 29: 1, 73 – 80 **To link to this Article: DOI:** 10.1080/00958979308037127

URL: http://dx.doi.org/10.1080/00958979308037127

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS OF MONOSUBSTITUTED PENTAKIS(2,6-DIETHYLPHENYLISO CYANIDE)-COBALT(I) COMPLEXES WITH BIDENTATE TERTIARY PHOSPHINE LIGANDS. I. MONOMETALLIC COMPLEXES

CLIFFORD A.L. BECKER

Department of Chemistry, University of Bahrain, P.O. Box 32038, Isa Town, Bahrain—Arabian Gulf

(Received October 12, 1992)

Reaction of $[Co(CNC_6H_3Et_2-2,6)_5]BF_4$ with bidentate phosphines leads to monosubstituted Co(I) complexes, $[Co(CNC_6H_3Et_2-2,6)_4(L-L)]BF_4$, where L-L = Ph₂P(CH₂)_nPPh₂, n = 1-4,6; Ph₂PCH₂-CH₂AsPh₂, Ph₂PC₆H₄PPh₂-p, Ph₂PCH==CHPPh₂-trans. Reaction conditions are such that disubstitution would be possible, but bidentate bridging to form bimetallic complexes is not favoured. Comparison of $v(-N\equivC)$ IR, electronic spectra, and molar conductivities with values for $[Co(CNC_6H_3Et_2-2,6)_4L]X$, where X = ClO₄, BF₄; L = monodentate triarylphosphine; indicates that these new complexes must also be five-coordinate Co(I) complexes, in which the potentially bidentate phosphine ligands are coordinated through only one P atom. Structures are approximately trigonal bipyramidal in solution and the solid state, with the phosphine ligand occupying an axial position.

KEY WORDS: 2,6-diethylphenylisocyanide, arylisocyanide, tertiary phosphine, cobalt(I), bidentate ligand

INTRODUCTION

Chelating abilities of polydentate tertiary phosphine ligands are well-established with many transition metal cations. With $[Co(CNCMe_3)_5]^+$, for example, two, three, and four coordination sites can be substituted by P atoms of the appropriate polydentate phosphine.¹ Pentakis(arylisocyanide)cobalt(I) complexes, in general, tend to disubstitute in reaction with monodentate triarylphosphines,²⁻⁴ but ease of monosubstitution clearly parallels steric bulk in the RNC: $C_6H_5NC \sim p$ - $MeC_6H_4NC < o$ -MeC₆H₄NC \ll 2,6-Me₂C₆H₃NC \sim 2,4,6-Me₃C₆H₂NC \ll 2,6- $Et_2C_6H_3NC.^3$ [Co(CNC₆H₃Et₂-2,6)₅]X, with X = ClO₄, BF₄, is monosubstituted in all reactions with monodentate triarylphosphines investigated,²⁻⁴ as well as with monodentate trialkylphosphines.⁵ [Co(CNC₆H₃Et₂-2,6)₃(PPh₃)₂]ClO₄ could not even be detected in ¹H-NMR studies of solution-phase disproportionations of the monosubstituted complexes, as follows.⁶

$2[Co(CNR)_4PR_3]^+ \rightleftharpoons [Co(CNR)_3(PR_3)_2]^+ + [Co(CNR)_5]^+$

Disubstituted pentakis(2,6-diethylphenylisocyanide)cobalt(I) complexes, $[Co(CNR)_3(PR_3)_2]X$, with $X = ClO_4$, BF_4 , are however readily obtained in reduction/ligand substitution reactions on $[Co(CNR)_4(ClO_4)_2]$ and $[Co(CNR)_5]$ - $(BF_4)_2$. H_2O with triarylphosphines.^{7,8} Thus while monsubstitution appears to be the preferred reaction for $[Co(CNC_6H_3Et_2-2,6)_5]X$, $X = ClO_4$, BF_4 , with tertiary phosphine ligands, the possibility of disubstitution cannot be excluded. With the additional driving force of the chelate effect, disubstitution by such bidentate phosphine ligands as $Ph_2PCH_2CH_2PPh_2$ or $Ph_2P(CH_2)_3PPh_2$ could be expected. Results observed in this study, however, show otherwise.

EXPERIMENTAL

Reagents

RNHCHO, R = 2.6-Et₂C₆H₃ hereafter, was prepared from commercial RNH₂ (Aldrich) and formic acid⁹ and converted to RNC by published procedure.^{2,10} [Co(CNR)₅](BF₄)₂.H₂O was prepared as reported.⁸ Commercial bidentate phosphines (Strem Chemicals) were used without further purification. Anhydrous diethyl ether was filtered through an alumina column immediately before use.

Instrumentation

IR spectra were recorded on a Perkin-Elmer 1710 FT-IR instrument. Solution electronic spectra were recorded on a Shimadzu UV-365 spectrophotometer. Molar conductivities were measured on ~ 0.001 M samples at 25.0°C using a Crison model 525 conductimeter. The C, H, N and P elemental analyses were performed commercially.

$[Co(CNC_{6}H_{3}Et_{2}-2,6)_{5}]BF_{4}$

A 1.50 g sample of $[Co(CNC_6H_3Et_2-2,6)_5](BF_4)_2$. H_2O was dissolved in 7.5 cm³ of pyridine, the dark blue solid producing an initial dark green solution which became yellow-brown in colour within 10-15 min at 25°C. Filtration through cotton produced a clear red-brown (bromine coloured) solution. Dropwise addition of 3.0 cm³ of distilled water caused initial precipitation; a total volume of 6.0 cm³ of distilled water was added, and the mixture was chilled in ice for 1 h. The bright yellow crystals (890 mg) were filtered, an additional 1.5 cm³ of distilled water was added dropwise to the filtrate, and upon lengthy refrigeration a second crop (300 mg) was obtained. Crude product was dissolved in CHCl₃, filtered through cotton, and precipitated by dropwise addition of ether. Yield: 820 mg (61%). Anal. Calcd. for $CoC_{55}H_{65}BF_4N_5$: C, 70.14; H, 6.96; N, 7.44%. Found: C, 70.52; H, 7.10; N, 7.36%. IR $v(-N \equiv C)$: 2103 vs, 2149 s (cm⁻¹; nujol); 2103 vs, 2146 s (CH₂Cl₂); Λ_{M} : 145 (acetone), 145 (CH₃CN), 90 (CH₃OH), 85 (CH₃NO₂), 70 (CH₂Cl₂) Ω^{-1} cm² mol⁻¹.

$[Co(CNC_6H_3Et_2-2,6)_4Ph_2PCH_2CH_2PPh_2]BF_4$

A 750 mg sample of $[Co(CNC_6H_3Et_2-2,6)_5]BF_4$ was dissolved in 2.0 cm³ of CH_2Cl_2 , filtered through cotton, and treated with a filtered solution of 793 mg $Ph_2PCH_2CH_2PPh_2$ (*i.e.*, 1:2.5 Co:ligand mole ratio) dissolved in 3.0 cm³ of CH_2Cl_2 , added dropwise with stirring at room temperature. The reaction mixture was allowed to stand 30 min at 25°C; an odour of free RNC was noted. Initial precipitation of fine yellow crystals occured after addition of 20.0 cm³ of ether. A total volume of 42.5 cm³ of ether was added, and the solution chilled for 45 min before filtration. Addition of excess ether to the filtrate and overnight refrigeration afforded a second crop of yellow crystals. The first crop (670 mg) was recrystallized from 2.0 cm³ of CH_2Cl_2 and 13.0 cm³ of ether; the second crop (145 mg) was separately recrystallized from CH_2Cl_2 /ether. Total yield: 650 mg (69%).

$[Co(CNC_6H_3Et_2-2,6)_4Ph_2PC_6H_4PPh_2-p]BF_4$

A solution of 890 mg of p-Ph₂PC₆H₄PPh₂ in 10.0 cm³ of CH₂Cl₂ was filtered through cotton. Then, 750 mg [Co(CNC₆H₃Et₂-2,6)₅]BF₄ (1:2.5 Co:ligand mole ratio) was added as solid, with 0.5 cm³ of CH₂Cl₂ rinse. The odour of liberated RNC was immediately evident. The reaction mixture was allowed to stand for 45 min at room temperature, after which ether was added slowly. Slight precipitation was noted after addition of 14.0 cm³ of ether, but a total volume of 30.0 cm³ of ether was added, and the solution was chilled for 1.5 h. A pale yellow solid (290 mg) was filtered from the dark orange solution; addition of 60.0 cm³ of ether to the filtrate and overnight refrigeration produced a second crop (110 mg) of dark yellow microcrystals. Successive additions of more ether, prolonged chilling, and slight evaporation afforded three more crops of dark yellow product (490 mg total); a sixth crop was recovered in the form of a very pale, yellow powder. The second to fifth crops (600 mg) were combined and recrystallized from 3.5 cm³ of CH₂Cl₂ and 15.0 cm³ of ether. Yield: 430 mg (72% recovery; 44% overall yield). The first and sixth crops were predominantly unreacted phosphine, and were therefore discarded.

RESULTS AND DISCUSSION

The monosubstituted, monometallic Co(I) complexes formed in the reaction between $[Co(CNC_6H_3Et_2-2,6)_5]BF_4$ and selected bidentate phosphine ligands are summarized in Table 1, with major physical properties.

Synthesis of the Complexes

Phosphines having relatively high solubilities in CH_2Cl_2 , such as $Ph_2P(CH_2)_nPPh_2$, n = 1 - 3; $Ph_2PCH_2CH_3AsPh_2$, and $Ph_2PC \equiv CPPH_2$, were reacted according to the synthesis for $[Co(CNR)_4Ph_2PCH_2CH_2PPh_2]BF_4$. Phosphines having more limited solubility in CH_2Cl_2 , such as $Ph_2P(CH_2)_nPPh_2$, n = 4 - 6; $(p-MeC_6H_4)_2PCH_2CH_2P(C_6H_4Me-p)_2$, $Ph_2PC_6H_4PPh_2-p$, and $Ph_2PCH \equiv CHPPh_2$ *trans*, were reacted according to the synthesis for $[Co(CNR)_4Ph_2PC_6H_4PPh_2-p]BF_4$.

2011
January
23
17:28
At:
Downloaded

		ν(—N≡C) Infrared ⁶		Electron	Electronic spectra ^c		Elemen	Found, Elemental analysis(%) calcd	F /sis(%)	Found/) calcd.
Compound ^a /M.pt. (°C)	Nujol	CH ₂ Cl ₂	CH ₃ NO ₂	CH ₂ Cl ₂	CH ₃ CN	Molar conductivity ^d	U	н	z	4
[Co(CNR ₁₄ Ph ₂ PCH ₂ PPh ₂]BF ₄ 104-109 (decomp)	~ 1988 vw(sh) 2059 vs(br) 2099 w 2150 m	1991 w 2078 vs(br) ~ 2108 w(sh) ~ 2118 vw(sh) 2160 m	~ 1990 vw 2076 vs(br) ~ 2108 w(sh) ≈ 2122 vw(sh) 2160 m	328 (15,100) 261 (55,200)	324 (12,600) 259 (53,200)	147 139 85 85 85	71.02 71.01	6.63 6.39	4.84 4.80	5.54 5.31
[Co(CNR ₁₄ Ph ₂ P(CH ₂) ₂ PPh ₂]BF ₄ 110-114 (decomp)	~ 1990 vw(sh) 2062 vs(br) 2107 w 2156 m	1996 w 2074 vs 2106 w ≈ 2114 vw(sh) 2159 m	~ 1998 w 2076 vs(br) ≈2109 vw(sh) 2127 w 2160 m	329 (20,200) 259 (75,500)	330 (16,800) 260 (59,400) ~ 238 sh	149 142 86 65	70.83 71.18	6.80 6.49	4.84 4.74	5.04 5.24
[Co(CNR) ₄ Ph ₂ P(CH ₂) ₃ PPh ₂]BF ₄ 154-156 (decomp)	~ 1992 vw(sh) 2067 vs(br) 2108 w 2159 m	1992 w 2075 vs 2107 w 2159 m	~ 1992 vw(sh) 2075 vs 2106 w ≈2123 vw(sh) 2160 m	330 (16,100) 263 (57,000)	330 (17,400) 263 (61,000)	148 136 88 82 66	71.61 71.36	6.79 6.58	4.67 4.69	5.32 5.18
[Co(CNR _A Ph ₂ P(CH ₂) ₄ PPh ₂]BF ₄ 111-115 (decomp)	~ 1992 vw(sh) ≈ 2035 w(sh) 2066 vs 2105 w 2156 m	1994 w ~ 2049 w(sh) 2073 vs(br) ~ 2105 w(sh) ≈ 2123 vw(sh) ≈ 2159 m	1994 w 2049 m(sh) 2073 vs(br) ~2103 w(sh) ~2125 vw(sh) 2160 m	~ 328 (14.100) 260 (58,600)	~ 326sh (14,100) 271 (75,000) 239 (161,000)	145 93 90 47	71.35 71.52	6.76 6.67	4.54 4.63	5.10 5.12

6.81 4.61 6.84 4.53	6.32 4.61 6.25 4.57	6.55 4.64 6.33 4.75	6.21 4.23 6.23 4.56
71.25 71.84	68.61 68.63	71.00	72.29
144 142 91 87 60	148 141 89 72 72	150 140 84 69	175 175 115 105 56
324 (14,800) 263 (61,100)	331 (17,800) 261 (60,800) ~ 237sh	325 (19,300) 257 (53,300) ~ 238sh	325 (16,200) 252 (52,200) 238sh (59,500) 230sh (62,500) 230sh (62,500)
329 (17,300) 268sh (71,400) 242 (142,000)	331 (17,900) 260 (60,000)	328 (21,000) 260 (57,300)	325 (21,900) 260 (58,300) 239sh (59,100)
1993 w ~ 2044 w(sh) 2072 vs ~ 2105 w(sh) ≈ 2123 vw(sh) ≈ 2159 m	1997 vw 2074 vs(br) 2105 w(sh) ≈2123 vw(sh) 2160 m	1997 w 2079 vs ~2108 w(sh) ~2124 vw(sh) 2160 m	2080 vs(br) 2110 w 2126 vw(sh) 2161 m
$1994 \text{ w} \approx 2046 \text{ w(sh)} \approx 2046 \text{ w(sh)} \approx 2073 \text{ vs} \approx 2108 \text{ w} \approx 2122 \text{ vw(sh)} \approx 2158 \text{ m}$	1997 w 2074 vs(br) ~ 2104 w(sh) ≈ 2122 vw(sh) 2157 m	1995 w 2078 vs 2106 w ~ 2123 vw(sh) 2159 m	2080 vs(br) 2108 w 2122 vw(sh) 2159 m
~ 1995 vw(sh) 2071 vs 2105 w 2156 m	~ 1995 vw(sh) 2067 vs(br) 2106 w 2155 m	~ 1994 vw(sh) 2068 vs 2103 w 2152 m	~ 1990 vw(sh) 2079 vs(br) 2110 vw(sh) 2162 m
[Co(CNR)4Ph_2P(CH ₂)6Ph_2]BF4 106-116 (decomp)	[Co(CNR) ₄ Ph ₂ P(CH ₂) ₂ AsPh ₂]BF ₄ 122-125 (decomp)	[Co(CNR),Ph_2PCH==CHPPh_rtrans]BF4 88-95 (decomp)	[Co(CNR) ₄ Ph ₂ PC ₆ H ₄ PPh ₂ -p]BF ₄ 218-224 (decomp)

 ${}^{a}R = C_{a}H_{3}E_{12}-26$. $b_{v}(-N\equiv C)$ in cm⁻¹; s = strong, m = medium, w = weak, v = very, sh = shoulder, br = broad. ${}^{c}\lambda_{max}(s)$ in mn without Gaussian resolution. ${}^{d}Molar$ conductivity, $\Lambda_{M} = 1000 L_{correct} C_{M}^{-1}$ in ohm⁻¹ cm² mole⁻¹, first value in CH₃C(O)CH₃, second value in CH₅CN, third value in CH₃OH, fourth value in CH₃NO₂, fifth value in CH₂Cl₂.

2011
January
23
17:28
At:
Downloaded

	Isocyan	Isocyanide IR ^b	Electronic spectra ^c	s spectra ^c	
Compound ^a	CH ₂ Cl ₂	Nujol	CH ₂ Cl ₂	CH ₃ CN	Molar conductivity ^d
[Co(CNR),P(C ₆ H ₅) ₃]ClO ₄	~1999 vw 2078 s 2108 w ~2128 vw(sh) 2160 m	~ 2000 vw 2069 s(br) ~ 2083 m(sh) 2109 w 2159 m	335 (20,900) 264 (60,000) ~ 234sh (60,000)	333 (15,700) 261 (51,800) ≈ 238sh ~ 230sh (57,400)	146 134 89 81 68
[Co(CNR)₄P(C ₆ H₄OMe-p)₃]CIO₄	~ 2000 vw 2074 s 2105 w 2159 m	~ 2000 vw 2070 sh(br) 2104 w 2156 m	~ 338sh (20,000) ≈ 276sh 254 (73,100) ≈ 239sh	~ 336sh (16,800) ≈ 275sh 253 (66,400) ~ 243sh (63,900)	131 121 84 63
[Co(CNR)4P(C ₆ H4Cl-p)3]ClO4	~ 1999 vw 2082 s ~ 2111 w(sh) ~ 2127 vw(sh) 2163 m	~ 1999 vw 2067 vs(br) 2079 s(br) 2110 w 2159 m	331 (22,700) ~ 261sh (62,100) 244 (71,800)	328 (14,000) ~ 256sh (48,700) ~ 236sh (61,000)	139 129 85 64
[Co(CNR)₄P(C ₆ H₄F-p)₃]ClO₄ ^e	1995 vw 2079 vs 2109 w ~2126 vw(sh) 2160 m	~ 1991 vw(sh) 2068 vs(br) 2108 w 2158 m	332 (22,700) 262 (60,300) 237 (59,400)	332 (15,800) 257 (54,000) ≈ 2338sh ~ 2318sh (57,900)	143 137 89 81 66
[Co(CNR)₄P(C ₆ H₄Me- _{P)3}]ClO₄ ^f	1994 2074 vs 2104 w ~2122 vw(sh) 2157 m	~ 1990 vw(sh) 2045 s 2078 w 2105 w 2156 m	337 (21,500) 266 (60,200) 242 (67,500)	334 (19,600) 264 (52,700) 240 (59,300)	147 132 89 70
[Co(CNR) ₄ {2-Ph ₂ PC ₅ H ₄ N}]CIO ₄ ^g	1998 w 2082 vs(br) 2109 w 2125 w(sh) 2159 m	~ 1998 vw(sh) 2059 vs(br) 2107 w 2156 m	333 (19,700) 261 (61,600)	330 (14,600) 257 (51,800) ~ 236sh (52,000) ~ 230sh (54,300)	145 135 90 81 67

Table 2 Solution properties for cobalt(I) complexes of 2,6-diethylphenylisocyanide and monodentate triarylphosphine ligands.

^aR = C₆H₃Et₃-2.6. ^bv($-N\equiv C$) in cm⁻¹; s = strong. m = medium, w = weak, v = very, sh = shoulder, br = broad. ^cA_{max}(e) in nm, without Gaussian resolution. ^dMolar conductivity, A_M = 1000 L_{correct} Cm¹ in Ω^{-1} cm² mol⁻¹; first value in acetone. second in CH₃CN, third in CH₃OH, fourth in CH₃NO₂, fifth in CH₂Cl₂. ^eAnal. Caled. for CoC₆₂H₆₄ClF₃N₄O₄P; C, 66.99, H, 5.80; N, 5.04%; found: C, 66.63; H, 5.70; N, 4.76%. ^fAnal. Caled. for CoC₆₃H₉₄Cl, 6.69; H, 6.09%; found: C, 66.63; H, 5.70; N, 4.76%. ^fAnal. Caled. for CoC₆₅H₉₆ClN₅O₄; found: C, 70.76; H, 6.28; N, 4.83%. ^gAnal. Caled. for CoC₆₄H₆₆ClN₅O₄: found: C, 70.76; H, 6.28; N, 4.83%. ^gAnal. Caled. for CoC₆₄H₆₆ClN₅O₄: found: C, 70.76; H, 6.28; N, 4.83%. ^gAnal. Caled. for CoC₆₄H₆₆ClN₅O₄: H, 6.22; N, 6.42%.

Several phosphines required a considerable volume of CH_2Cl_2 for solubility, which consequently required large volumes of ether and increased risk of the product separating as an oil. Prolonged chilling (several days) was required in some instances. Reaction appeared to take place with $Ph_2P(CH_2)_5PPh_2$ and $(p-MeC_6H_4)_2PCH_2CH_2P(C_6H_4Me-p)_2$, but the resulting oils could not be crystallized. Reaction with $Ph_2PC\equiv CPPh_2$ required prolonged refrigeration (several weeks), and the product recovered was the bimetallic complex [(RNC)_4CoPh_2PC\equiv CPPh_2Co-(CNR)_4](BF_4)_2 (to be reported elsewhere).

Results of these syntheses seem to indicate that a reluctance to disubstitute, or alternatively a tendency to monosubstitute, in $[Co(CNC_6H_3Et_2-2,6)_5]^+$ is a stronger driving force than the chelate effect for ligands such as $Ph_2P(CH_2)_nPPh_2$. This is rather interesting. It should be noted, however, that known disubstituted complexes most probably involve *trans* positioning of the triarylphosphines, but a chelating bidentate phosphine would necessarily occupy an axial and an equatorial position or possibly two equatorial positions. This could be significant in the stabilization of the Co(I) complex. Opportunity for bidentate bridging between two $Co(CNR)_4$ moieties, especially with phosphines such as Ph2PC6H4PPh2-p, Ph2PCH=CHPPh2trans, and $Ph_2PC \equiv CPPh_2$, is probably minimized by the excess phosphine in the 2.5:1 phosphine: Co mole ratio. Behaviour of $Ph_2PC \equiv CPPh_2$ in forming a bimetallic complex in spite of the reaction conditions is unique. if reaction conditions are favourable for bidentate bridging, such as reacting excess $[Co(CNR)_5]BF_4$ with the phosphine (e.g., 1:3 phosphine: Co mole ratio) or reacting $[Co(CNR)_4(L-L)]BF_4$ with additional $[Co(CNR)_5]BF_4$, bimetallic complexes are obtained, as will be reported in a subsequent paper.

Characterization of the Complexes

Physical properties, IR ($\nu(-N\equiv C)$) and solution electronic spectra and molar conductivities (Λ_M) for the new complexes are listed in Table 1. Comparison with these properties for *pentakis*(2,6-diethylphenylisocyanide)cobalt(I) monosubstituted with monodentate triarylphosphines (Table 2) shows such strong similarity that analogous structures must be adopted. The $\nu(-N\equiv C)$ IR patern in particular, previously published,^{3.5,11,12} is in effect a "fingerprint" for monosubstituted *pentakis*(arylisocyanide)cobalt(I) complexes in general. Similarity of this pattern in solid and solution states indicates there are no significant structural changes upon dissolution. Electronic spectra consisting of two charge-transfer bands ~ 325 - 330 nm, ~ 250 - 270 nm are also typical for these complexes. The inevitable conclusion is that these new complexes must contain five-coordinate Co(I), in which the potentially bidentate phosphine ligands are coordinated through only one P atom. Ph₂PCH₂CH₂AsPh₂ is undoubtedly coordinated through P, with free As, since triarylarsine shows no reaction with *pentakis*(arylisocyanide)cobalt(I).¹³

Actual structures of all these monosubstituted Co(I) complexes are most probably slightly distorted trigonal bipyramidal, in solution and solid states, with the phosphine ligand in an axial position. The $v(-N\equiv C)$ IR pattern has previously been so interpreted.^{5,12,14} Electronic bands are almost certainly charge-transfer in nature, most probably $d_{\pi} \rightarrow \pi^*$ metal to ligand transitions. Molar conductivity values in acetone, CH₃CN, CH₃OH, and CH₃NO₂ are within the ranges anticipated for 1:1 electrolytes,¹⁵ so the Λ_M values in CH₂Cl₂ (45–70 Ω^{-1} cm² mol⁻¹) probably represent fully dissociated 1:1 electrolytes.

References

- 1. R.B. King and M.S. Saran, Inorg. Chem., 11, 2112 (1972).
- 2. C.A.L. Becker, Synth. React. Inorg. Metal-Org. Chem., 4, 213 (1974).
- 3. C.A.L. Becker, J. Inorg. Nucl. Chem., 42, 27 (1980).
- 4. C.A.L. Becker, Inorg. Chim. Acta, 77, L247 (1983).
- 5. C.A.L. Becker and N.K. Homsy, Inorg. Chim. Acta, 89, 93 (1984).
- 6. C.A.L. Becker, R. Rezaaiyan and F. Moattar, Inorg. Chim. Acta, 100, 227 (1985).
- 7. C.A.L. Becker, Synth. React. Inorg. Metal-Org. Chem., 9, 445 (1979).
- 8. C.A.L. Becker and J.C. Cooper, Inorg. Chim. Acta, 182, 25 (1991).
- 9. B.C. McKusick and O.W. Webster, Organic Syntheses, 41, 102 (1961).
- 10. W.R. Hertler and E.J. Corey, J. Org. Chem., 23, 1221 (1958).
- 11. S. Otsuka and M. Rossi, Bull. Chem. Soc. Japan, 46, 3411 (1973).
- 12. C.A.L. Becker, W.D. Singer and E.M. Towler, Inorg. Chim. Acta, 113, 75 (1986).
- 13. C.A.L. Becker, Inorg. Chim. Acta, 36, L441 (1979).
- 14. C.A.L. Becker and G.C. Papavassiliou, data reported at the 180th National Meeting of the American Chemical Society, August 1980, Abst. No. 295 (Inorg. Div.).
- 15. R.J. Angelici, "Synthesis and Technique in Inorganic Chemistry," (Saunders, Philadelphia, 1960), 2nd edn., Appl. 1.